Effect of Temperature on the Distribution of Polycyclic Aromatic Hydrocarbons in Soil and Sediment
نویسندگان
چکیده
The knowledge of sorption-desorption processes of polycyclic aromatic hydrocarbons (PAHs) in natural solids is essential to predict the fate, transport, and environmental risks of these pollutants. In this study, the effect was investigated of temperature on the sorption-desorption of three PAHs (naphthalene, phenanthrene, and pyrene) in two natural solids with different organic carbon contents. In all cases, the sorption isotherms obtained could be well described by the linear sorption model. The analysis based on the measured isotherms and the corresponding equilibrium partition coefficients (kp) revealed that (1) the sorption of PAHs increased with organic carbon content of the solid and PAH hydrophobicity in the order: sediment < soil and naphthalene < phenanthrene < pyrene, respectively, and (2) the extent of PAH sorption decreased with increasing temperature from 4°C to 27°C on average by 27.3, 17.0, and 27.4% for naphthalene, phenanthrene, and pyrene, respectively. The enthalpies of sorption (∆Hs) calculated by van’t Hoff equation were negative, relatively small, and in the range of weak forces such as van der Waals forces (0–9 kJ/mol), consistent with hydrophobic interactions and partitioning of the PAHs into soil/sediment organic matter. The desorption of naphthalene and phenanthrene showed significant hysteresis, i.e. great fraction of PAHs was resistant to desorption and somewhat increased with temperature.
منابع مشابه
Extraction and Recovery of Polycyclic Aromatic Hydrocarbons in Petroleum Contaminated Soils Using Supercritical Water by Response Surface Methodology
Finding an environment-friendly and affordable method to remove contaminated soils from Polycyclic Aromatic Hydrocarbons (PAHs) has now become an attractive field for researchers, with super-critical fluid extraction being an innovative process in the field of contaminated soil treatment. Extraction with super-critical fluid is a simple and rapid extraction process that uses super-critical flui...
متن کاملExtraction and Recovery of Polycyclic Aromatic Hydrocarbons in Petroleum Contaminated Soils Using Supercritical Water by Response Surface Methodology
Finding an environment-friendly and affordable method to remove contaminated soils from Polycyclic Aromatic Hydrocarbons (PAHs) has now become an attractive field for researchers, with super-critical fluid extraction being an innovative process in the field of contaminated soil treatment. Extraction with super-critical fluid is a simple and rapid extraction process that uses super-critical flui...
متن کاملEffect of Co-existing Heavy Metals and Natural Organic Matter on Sorption/Desorption of Polycyclic Aromatic Hydrocarbons in Soil: A Review
Polycyclic aromatic hydrocarbons (PAHs), abundant in mixed contaminant sites, often coexist with heavy metals. The fate and remediation of PAHs depend heavily on the sorption and desorption behavior of these contaminants. The sorption behavior can in turn be highly affected by certain soil components and properties, such as soil organic matter (SOM) and the presence of heavy metals. Through rev...
متن کاملEffect of Co-existing Heavy Metals and Natural Organic Matter on Sorption/Desorption of Polycyclic Aromatic Hydrocarbons in Soil: A Review
Polycyclic aromatic hydrocarbons (PAHs), abundant in mixed contaminant sites, often coexist with heavy metals. The fate and remediation of PAHs depend heavily on the sorption and desorption behavior of these contaminants. The sorption behavior can in turn be highly affected by certain soil components and properties, such as soil organic matter (SOM) and the presence of heavy metals. Through rev...
متن کاملDetermination of polycyclic aromatic hydrocarbons (PAHs) in water, sediment and tissue of five sturgeon species in the southern Caspian Sea coastal regions
Concentration levels of 16 polycyclic aromatic hydrocarbons (PAHs) consisting of naphthalene, acenaphthylene, acenaphthene, fluorine, phenantherene, anthracene, fluor?anthene, pyrene, benzo(a)anthracene, chrysene, benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(a)p?yrene, dibenzo(a,h)ant?hracene, indeno(1,2,3-cd) pyrene and benzo(g,h,i)perylene were measured in water and sediment samples col...
متن کامل